
Approved for public release;
disfribution is unlimited. \

T'itle,

Author(s) ,

Submitted to.

LO lam0
N AT I 0 N A L LAB 0 KAT0 RY

An Application Architecture for Large Data Visualization: A
Case Study

C. Charles Law,
Amy Henderson,
James Ahrens.

IEEE Visualization 2001.

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California forthe U.S.
Depertment of Einergy under contract W-7405zNG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royally-free license to publish or reproduce the published form of this contribution, orto allow others to do so, for U.S.
Govc:rnment purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of tlie U.S. Department of' Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (NOD)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

An Applic chitecture for Large Data
Visualization: A Case Study

C. Charles Law, Amy Hendersori
Kitware Incorporated

Abstract

In this case study we present an open-source
visualization application with a duta-parallel novel
application architecture. The architecture is unique
because is uses the Tcl scripting language to synchronize
the user integuce with the VTK parallel visualization
pipeline and parallel-rendering module. The resulting
application shows scalable performance, and is eusily
extendable becuuse of its simple modulur architecture.
We demonstrate the application with a 9.8 gigabyte
structured-grid ocean model.

1 Introduction

The ability of nmsively-parallel simulations to generate
data has outpaced our ability visualize large data sets.
The size of models generated by distributed simulations
makes it difficult to collect the results on a single
computer for visualization. To accommodate,
simulations save less data for fewer time steps, and
visualizations are generated lcss often. This solution has
many unfortunate consequences. Key results can be
missed or simulations gone awry can run for days before
the problem is noticed. A simple, effective method for
visualizing large data sets is needed to analyze the results
of today’s simulations.

Climate simulations by the Parallel Ocean Program
(POP) at the Los Alamos National Laboratory (LANL)
are a good example of the large-data problem. Current
simulations are using a 1/10” degree global grid. The
resulting structured datai set has dimensions
3600x2400~40. The constanit grid points require -4.1 GB
when reconstructed, and each 3D attribute requires
-1.4GB. 10 year simulations with daily time step dumps
are generating an overwhelming amount of data. Current
visualization systems are unable to handle data sets of
this magnitude.

James Ahrens
Los Alamos National Laboratory

This case study discusses recent multiprocessing features
added to the Visualization ToolKit and how they were
used to create a turnkey application called Paraview.
We demonstrate the application running on a 9.8
gigabyte ocean model.

2 The Visualization Toolkit

The Visualization ToolKit’ (VTK) is an open source
freely available software toolkit for 3D computer
graphics, image processing and visualization[’41. VTK
has recently been extended to process visualization tasks
in parallel[2’81. The demand driven pipeline can now
operate on pieces of data sets: unstructured as well as
structured. This allows out-of-core streaming of large
data over time, and distributing data sets over multiple
processes for data parallelism.

In VTK, communication between processes uses a class
that is implemented on top of MPI (Message Passing
Interface) and the MPICH libraries. Although much of
this class’s interface is similar to MPI, other
communication techniques can be used in place of MPI.
VTK also has communication classes based on shared-
memory and sockets, either of which can be
transparently substituted for MPI based class. On top of
these low-level communication classes, VTK has also
implemented remote-method invocations (RMIs),
marshalling of VTK data sets, and ports to connect
pipelines in different processes.

The multi-processing tools in VTK are very general and
support a variety of parallel techniques, but for the
application ParaView we only require VTK’s data-
parallel operation. In VTK’s data-parallel mode,
identical pipelines are created in every process, and each
process is assigned a different piece of the data set. The
pipelines can be connected through ports to collect the
geometry in a single process for rendering, or the
geometry can be render local to each process and the
frame buffers collected with a sort-last compositing
algorithm.

’ VTK source and libraries can be downloaded from
_- Iittn://www.kitware.coni/vtkhtinl/vtkda~~Iow~oGetSo~w~e. hlinl

Binary tree cornpositing is one simple parallel-rendering
module that hiis been implemented in VTK. This
module uses the first process to control interaction, while
all other processes are waiting for messitges to trigger
RMI calls. RMIs change pipeline parameters and trigger
remote renderslcompositing. We chose this technique
for Paraview's primary rendering mode because the
large data remains; distributed and scalability is virtually
unlimited. Using parallel compositing and out-o I-core
streaming, VTK pipelines (containing iso-surface and
probe filters) have been dertionstrated on 900 terabytes
of data distributed across 1024 processorsp1.

3 Paraview'

Although VTK is very powerful and can be easily
scripted, it is only a toolkit. VTK can by itself process
large data sets, but it is not easy to use. Most scientists
are unwilling to write visualizations pipelines in C tf or
Tcl. A turnkey application is needed to klly utilize
VTK capabilities. We are creating a extendible open-
source turn-key application called ParaView that is built
on top of VTK and can processes large data sets in
parallel.

Besides usability and scalability, the niost imporlant
design requirement for ParaView was extendibility. The
application is open-source and we expected that others
will contribute filters and rendering modules. The
architecture had to be simple, so new features could be
added easily. Any filter that is put into VTK can trivially
be added to Paraview's user interface.

For extendibility, we separated the VTK processing
engine from the user interface (UI). The user-interface
module runs on the first process and is responsible for
constructing and synchronizing the duplicate VTK
pipelines in the satellite processes. Once this is
achieved, VTK takes €ulK control of the pipeline
execution and distributed rendering. This division gives
the application great flexibility. A pipeline created in
ParaView can be saved and run separately with no
dependence on the user interface 01 widget libraries.
Such pipelines would be useful for batch processing,
run-time visualization, or creating a visualization server.
This separability and modular approach also means that
the current widget set and UI architecture could be
changed if necessary.

We took an innovative and simple approach to
synchronizing the distributed pipeline with the user-
interface module. Inter-process synchronization is
handled almost exclusively with Tcl scripts. A Tcl
interpreter, linked to VTK, is running on every process.

_____I_______.__

Instructions for downloading and building ParaView
can be found at: hi~:llwww.lritware.com/ParaView

This simplifies the pipeline control to a single method
called "BroadcastScript(char*)". Since VTK is
automatically wrapped in Tcl, no special effort was
needed to create remote interfaces to the many VTK
filters.

Unique Tcl command strings are created for each VTK-
filter and data-object instance. These names are identical
across all processes so they can be used as identity tags.
Tcl handles hashing the names internally, so the
application does not need to manage this task.

Adding new filters to the application is simple. After the
filter has been added to VTK, it can easily be put in
ParaView with a concise text description of its user
interface. When ParaView starts, it reads a file that
describes all the VTK filters that will be accessible from
the application. The description is stored in an XML
format shown in figure 1. Several widget options are
available to map filter parameters. These include:

0 Sliders for clamped values
0

0 Option menus
0 Data set selection menu
0 File dialogs

String and numerical entries (multi-element)

Toggle buttons for Boolean values

<argument type= '9oat"b root= "Cone">
<output class= "vtkPolyData " b
<variable name="Resolution set="SetResolution "get="GetResolution">

<argument type='yoat "b
</varible>
<variable name= "Radius " set
</varible>
<variable name= "Height" se t = "SetHeight " get= "GetHeight ">

</varible>
<variable name= "Capping" set= "SetCapping I' get= "Getcapping "

<argument type="Jloat'7>

widget= "check ">
<argument type="int"b

</varible>
</source>
igure 1: User interfaces for vtkFilters can be define in

XML and loaded from a file. This interface is for VTK's
cone source.

The resulting interfaces are rigid but they allow easy
access to all of the filters and sources in VTK. To make
the application easy to use, common filters have special
UIs, which are accessible directly from icons on the
toolbar The following filters currently have custom
interfaces:

0 Is0 Contouring
Glyphing

CuttingjClipping
0 Thres ho ltiing
0 Attribute Calculator

-
1 Proc.

Full Resolution 15.6 sec.
Desmated 0.43 sec.
Decimated and 0.44 sec.

Using the Tcl scripting language to control the
distributed VTK pipeline was a natural choice because
both the VTK pipeline objects and the user interfwe
components are wrapped in Tcl. This approach also
makes it extremely easy to add new components to the
application. It allows simple text commands to define
the connection between widgcts and pipeline parameters.

2 Procs. 4 Procs. 8 Procs. 16 Procs
8.66 sec. 5.85 sec. 4.32 sec. 4.12 sec.
1.02 sec. 1.46 sec. 1.84 sec. 2.63 sec.
0.69 sec. 0.61 sec. 0.65 sec. 0.67 sec.

3.1 Tcl and the Application Framework

The application framework i s a unique blend of Tcl/Tk
and C++. Tk is used as the widget set, but C++ objects
are created to encapsulate the widgets and create higher-
level UI components. Like VTK objects, these C t i - UI
objects are automatically wriipped in Tcl, with all public
methods accessible from the scripting language. Tcl is
used to communicate between the Tk widgets and the
C-k+ objects, but is almost completely hidden from the
developer. This approach takes advantage of the
callback bindings of TI<, and keeps the object-oriented
design and eSficiency of C++.

3.2 Levels 0% Details
Although our parallel cornpositing module can handle
any size data, the disadvantage of this approach is that
rendering rates can be slow. Clusters that do not have
graphics acceleration on every node must rely on
software rendering. There is also a fixed cost for
communicating the frame buffers to the first node for
display. Although the frame buffers are relatively small,
the communication occurs at every render.

To address these issues ParaView has two rendering
modes: an interactive mode where detail is sacrificed for
interactive frame rates, and a still mode, which occurs at
the end of interaction. The still mode always uses tree
compositing and may take several seconds. A few level-
of-detail (LOD) techniques have been implemented to
increase fiame rates for interactive rendering. The
combination of approaches selected depends on the
specific capabilities of the cluster.

LOD techniques have been proven useful for
interactively rendering other large It must
be noted that no information is lost with this technique.
Reduced resolution models are only temporarily
substituted for the full resolution image while the user is
interactively changing the view. If the user wants to see
a full resolution image, they can simply stop the
interaction (release the mouse button) to cause a render
in still mode.

Sub-sampling is the first LOD technique we consider.
Large rendering windows are often necessary to show all
the detail of large data sets. When large windows are
used, the communication of the color and Z buffers
dominates over the rendering time. For interactive
rendering, we render and composite smaller windows
and use pixel replication to magnify the result for final
display (see figure 3). This technique has also been used
successfully for ray-cast volume rendering in VTK.

Rendering large geometry on each individual process can
also be a bottleneck. This is especially true when using
software rendering. It this situation, we use a distributed
decimation algorithm[5761 that quickly generates small
models to substitute for the original models. The chosen
algorithm uses a quadric error measure and requires no
communication between the processes. Table 1
compares the rendering times of a 1.8 million-triangle
is0 surface with different LOD techniques and on
different number of processes.

When both of these approaches fail to give adequate
frame rates, the final solution is to transmit the simplified
geometry to the first process where it can be rendered
locally. This is the best LOD approach when hardware-
rendering resources are available only to the first
process.

4 Results

To demonstrate the application we used a POP ocean
data set based on a 3200x2400~40 structured grid. The
data has temperature, salinity and flow information for
each element. The data set consumes -6.3 Gbytes of
disk, and expands to -9.8 Gbytes of memory when the
grid points and vertical flow component are
reconstructed.

Figure 2 shows the application running on 16 processors
of a distributed cluster with an ocean data set. An is0
surface (0.001) of salinity was used for the ocean floor.
The continents were generate with geometry filter and a
clip filters. An is0 surface of salinity at 0.0365 was
taken and colored by ocean temperature. Figure 3 shows
the same view when using LOD pixel subsampling rate
of 3x3.

I

Table 2: Scalable performance is demonstrated for three
VTK filters. The Decimatiom filter reduced 17.3 million
triangles to 14.8 thousand. I have no explanation for the
<liner-linear nsrfnrmanrr nf the rlin filtw.

Table 2 shows scalable performance for four different
filters used in the pipeline from figure 2. A reduced
resolution grid with 13 million cells was used to allow
the pipeline to run efficiently on one process, but the
decimation filter was tested on a different full resolution
(3600x2400) model of the ocean surface.

Figure 4 shows a close up of the Straits of Gibraltar
where the Mediterranean Sea meets the Atlantic Ocean.
The 2D cut surface shows salinity values vs. depth. The
ocean floor and continents were generated in the same
way as figure 2.

Figure 5 shows flow in the Atlantic Ocean near the
Mediterranean Sea. Afcer the ocean floor and continents
were extracted, the number of sample points was reduced
with a threshold filter that eliminated points with small
vector magnitudes. The vectors were further reduced
with a spatial-exclusion filter. Vectors inhibited
neighboring samples so that each vector had a sphere
with no other samples in it. The radii of these spheres
were scaled try the vector magnitude. A glyph filter was
then used to display the vectors as arrows, which were
scaled and colored by the vector magnitude.

5 Future Work

Although VTK sources and filters can easily be added to
Paraview's user interface, not all VTK filters can run in
a distributed environment or produce piece-invariant
results. VTK has implemented ghost cells for filters that
require information about neighboring cells, and a few
dozen filters in VTK already run in a distributed piece-
invariant manner. However, more work is required to
create alternativcs in VTK for filters that cannot be easily
converted. Connectivity, multi-pass smoothing, and
streamlines are a few examples of such filters.

Also, the distributed rendering module currently used in
ParaView is a rather simple tree-composite algorithm.
More efficient alternatives hilve to be implemented. A
couple options include: binary swap coinpositing['", or
an algorithm that compresses the buffers to reduce
communication costs[']. h t e rating a library for
rendering on large tiled displaysi7! would also be useful.

6 Conclusion

In this paper we presented a scalable application
architecture that is based on data parallelism in VTK and
has been developed to handle extremely large data sets.
The use of Tcl interpreters to synchronize the distributed
pipelines simplifies the application and the addition of
new features. The open source application "Paraview"
has been developed using the architecture and was
demonstrated on a 6.9 GB ocean temperature and salinity
data set.

6 Acknowledgements

This work was supported in part by grants from the US
Department of Energy ASCI Views program and the
DOE Office of Science.

The ocean model3 was supplied by Mathew Maltrud
from Los Alamos National Laboratory.

7 References
Garland, Michael and Paul S. Heckbert. Simplifying Surfaces
with Color and Texture using Quadric Error Metrics. In
Proceedings of IEEE Visualization '98, pages 263 - 269,1998.

Garland, Michael and Paul S. Heckbert. Surface Simplification
Using Quadric Error Metrics. In Proceedings of ACM
SIGGRAPH '97, pages 209-216, 1997.

Heckbert, Paul S. and Michael Garland. Survey of Polygonal
Surface Simplification Algorithms. ACMSIGGRAPH '97 Course
Notes, 1997.

Hoppe, Hughes and Steve Marschner. Efficient Minimization of
New Quadric Metric for Simplifying Meshes with Appearance
Attributes. (Adendum to IEEE Visualization 1999 paper)
Microsofi Research Technical Report MSR-TR-2000-61, June
2000.

Hoppe, Hughes. New Quadric Metric for Simplifying Meshes
with Appearance Attributes. In Proceedings of IEEE
Visualization '99, pages 59 - 66, 1999.

Lindstrom, Peter. Out-of-Core Simplification of Large Polygonal
Models. In Proceedings of ACMSIGGRAPH 2000, pages 259 -
262.2000.

Low, Kok-Lim and Tiow-Seng Tan. Model Simplification Using
Vertex-Clustering. In Proceedings of the 1997 Symposium on
Interactive 3 0 Graphics, pages 15 - 81, 1997.

Rossignac, Jarek and Paul Borrel. Multi-Resolution 3D
Approximations for Rendering Complex Scenes. In B. Falcidieno
and T. Kunii, editors, Modeling in Computer Graphics: Methods
and Applications, pages 455-465, 1993.

Schroeder, William J., Jonathan A. Zarge, and William E.
Lorensen. Decimation of Triangle Meshes. In Proceedings of
ACMSIGGRAPH '92, pages 65 - 70, 1992.

Data sets from POP simulations can be downloaded from
http://www,acl.lanl.gov/climate/

Figure 3. Pixel Replication LOD usrng the same
data infigure 2.

rture.

values varying with depth. Ocean depth is exaggerated.

An Application Architecture for Large Data Visualization: A Case Study, Law, Henderson and Ahrens.

